

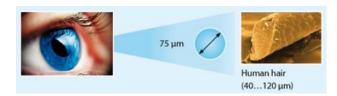
This Newsletter is about ...

THE RIGHT WAY OF CONTAMINATION MONITORING IN HYDRAULIC SYSTEMS

... AND HOW TO IMPROVE THE RELIABILITY OF YOUR HYDRAULIC SYSTEMS

We produce fluid power **solutions**

July 2020



We all know different types of oil contamination. Some are obvious, due to the appearance or change in colour, others perhaps not quite noticeable.

???

Some of them are ...

- gas / air (bubbles)
- other fluids (wrong oils, water, ...)
- cross-influence as water drops with air bubbles
- solid particles
 - metals
 - non-metals (dirt, plastics, soot, ...)

Contamination larger than 40 micron are visible to the human eye.

Fine particles are not noticeable and require special equipment.

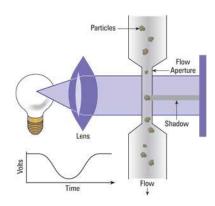
Why do we measure contamination?

- protection of components
- less service
- longer live time
- specifications of manufacturers
- detection of faults in the hydraulic system
- increase of effectiveness and value
-

Beside of supplying degasification solutions and dewatering filter systems,

ARGO-HYTOS is the market leader for oil condition monitoring and detection of contamination by solid particles.

July 2020

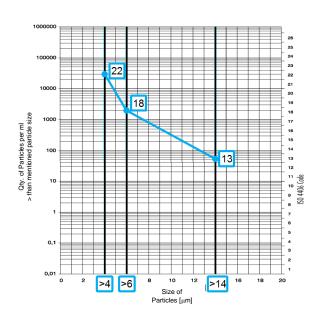

The industry implements various procedures ...

Measurement Methods				
microscopic measurement		 old method high effort critical sample preparation 		
mesh blocking principle		high technical effortlimited measurement range		
optical measurement light extinction principle ARGO-HYTOS	Particles of the state of the s	 particles create a shadow on the photocell 		

The preferred measurement method by ARGO-HYTOS is the *light extinction principle* which offers the most accurate results and the output our customers rely on it.

How does it work?

- If there is no particle in the measurement cell, all light will pass through to the photo diode
- If a particle enters the measurement cell a shadow will be created on the photo diode
- The size of the particle can be determined by the light intensity detected at the photo diode
- Measurement standard sizes are 4, 6 and 14 micron
- The flow is calculated by the speed of the particles


July 2020

How do we classify the contamination?

The most common standard in our geographical market and industry is ISO 4406:1999 which indicates the number of particles per 1 ml with a code.

... for example 22/18/13

Partikel	per 1 ml	Code	
von	bis	ISO 4406	
80.000	160.000	24	
40.000	80.000	23	
20.000	40.000	22	>4
10.000	20.000	21	
5.000	10.000	20	
2.500	5.000	19	
1.300	2.500	18	>6
640	1.300	17	
320	640	16	
160	320	15	
80	160	14	
40	80	13	>14
20	40	12	
10	20	11	
5	10	10	
2,5	5	9	
1,3	2,5	8	
0,64	1,3	7	
0,32	0,64	6	
0,16	0,32	5	
0,08	0,16	4	
0,04	0,08	3	
0,02	0,04	2	
0,01	0,02	1	

Which means particles ... > 4 micron between 20,000 and 40,000 particles

> 6 micron between 1,300 and 2,500 particles

> 14 micron between 40 and 80 particles

Typical cleanliness requirements

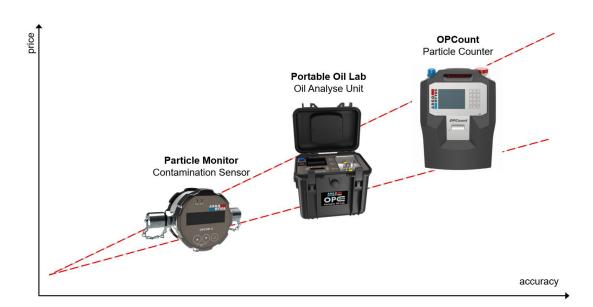
21 / 18 / 15

Pumps	
Axial piston pumps	21 / 18 / 15
Radial piston pumps	21 / 18 / 15
Gear pumps	21 / 18 / 15
Vane pumps	20 / 17 / 14
Motors	
Axial piston motors	21 / 18 / 15
Radial piston motors	21 / 18 / 15
Gear motors	21 / 18 / 15
Vane motors	20 / 17 / 14
Valves	
Directional control valves	21 / 18 / 15
(solenoid valves)	
Pressure valves	21 / 18 / 15
Flow control valves	21 / 18 / 15
Check valves	21 / 18 / 15
Proportional valves	20 / 17 / 14
Servo valves	17 / 14 / 11

Cylinders

The required oil cleanliness in the system is determined by the most dirt-sensitive component.

If the operating pressure is increased in a system, it is necessary to improve the oil cleanliness to achieve the same wear lifetime for the components.


Operating pressure	Change in oil cleanliness
0100 bar 100160 bar 160210 bar 210250 bar 250315 bar 315420 bar 420500 bar 500630 bar	3 classes worse 1 class worse none 1 classe better 2 classes better 3 classes better 4 classes better 5 classes better

Oil cleanliness levels required for hydraulic components (160...210 bar)

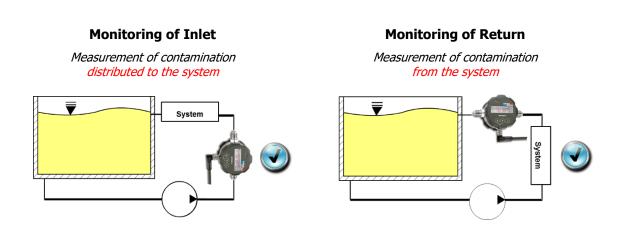
July 2020

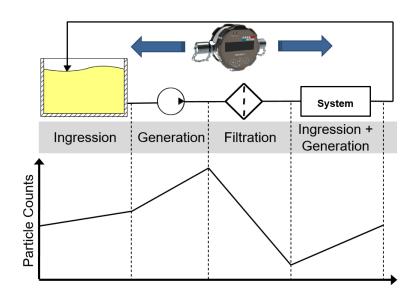
We offer different measuring instruments to improve the reliability of your hydraulic system.

Online Sampling

- No influence of wrong sampling
- Trends can easily be displayed
- Continuous monitoring over long periods

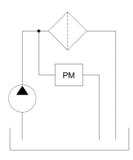
Bottle Sampling

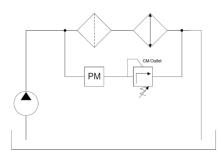

- Samples can be measured at a later time
- Sample can be analysed in the lab
- Samples can be taken at several points parallel

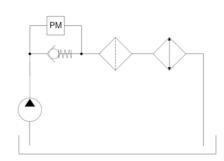

Please also see our Newsletter from December 2019

How to measure contamination online

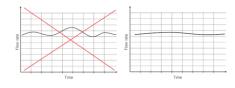
The measurement point has to be chosen according to the monitoring goal

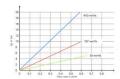



Find the correct place for system representative measurement



with adjustable pressure holding valve


with pressure holding valve


Pay attention to ...

a stable flow velocity within the limits

avoid blind holes in the supply line

the viscosity dependent flow range

ARGO-HYTOS is the leading company for condition and contamination monitoring.

July 2020

Please contact us for all your enquiries or a quotation:

Robert Kern Mech. Engineer FH STV RPEQ, RPEng (Mech)

+61 (0)447 022 477 r.kern@argo-hytos.com

Next Newsletter in August ...

Counterbalance (Overcentre) Valves